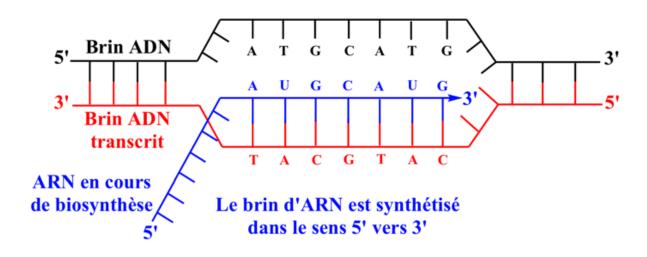

La Transcription

Chapitre II

Le «Dogme Central Simplifié» de la Biologie Moléculaire

Objectifs du cours

- Comprendre la transcription chez les procaryotes et les eucaryotes
- Comprendre les étapes clés de la transcription de l'ADN en ARN
- Comprendre la structure des gènes des procaryotes et eucaryotes
- Comprendre la structure et la fonction des ARN polymérases
- Comprendre la structure du promoteur et du terminateur
- Comparer la transcription entre procaryotes et eucaryotes
- Décrire les techniques moléculaires les plus courament utilisées pour étudier la transcription.

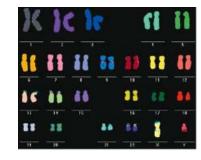

Définition: Transcription

 Synthèse d'un acide ribonucléique (ARN) par une ARN polymérase à partir d'une molécule d'ADN

 La structure primaire de l'ARN nouvellement formée est la copie identique du brin codant de l'ADN

 La transcription est une étape clé de l'expression d'un gène: synthèse de macromolécules (ARN et protéines) à partir d'une séquence d'ADN.

Transcription: Synthèse de l'ARN

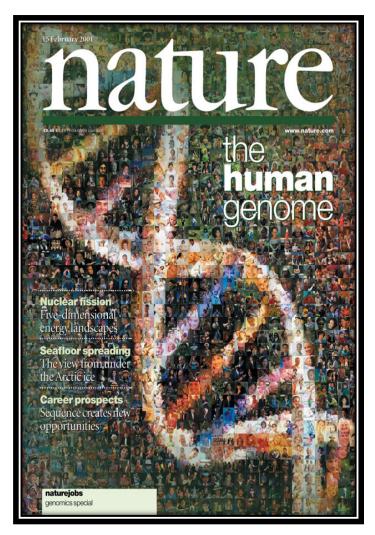


- La molécule d'ADN est formée de deux brins:
 - **Brin transcrit** (3'-5'): brin anti-codant: brin matriciel qui servira de matrice/modèle à l'ARN-polymérase
 - **Brin codant** (5'-3'): a une séquence identique à l'ARN néoformé (à l'exception que la Thymine est changée par l'Uracile dans l'ARN)
- Les ribonucleotides (rNTPs) sont ajoutés à l'extrémité 3' de la chaine en cours de biosynthèse selon la complémentarité avec la matrice d'ADN
- L'ARN messager (ARNm) synthétisé est monocaténaire (un seul brin) et est dirigé dans le même sens que le brin codant de l'ADN (5'-3').

5

Généralités: Gène

- Un gène est un segment d'ADN qui contient l'information nécessaire pour la synthèse d'un acide ribonucléique (ARN) ou d'une protéine
- Un gène se caractérise par sa:
 - position sur le chromosome
 - série de succession des séquences de bases

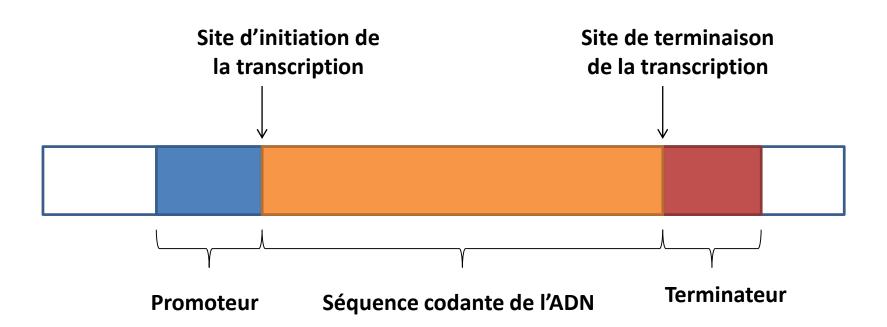

ATGCTAGGTAT TUTCCGAATGA CCATTTAGCCG ATTAGGA......

- Les gènes sont **Polycistroniques** chez les procaryotes. Ils forment une seule unité de transcription (plusieurs gènes sont transcrits en une seule molécule d'ARN).
- Les gènes sont **Monocistroniques** chez les eucaryotes: la transcription est indépendante entre les gènes et aboutie à la formation de plusieurs unités de transcription (chaque gène produit son ARN messager primaire).

Nombre de gènes par espèces

	Espèce	Taille du génome	Nombre de gènes
	Humains	2.9 milliard de paires de bases	20,000- 25,000
	Drosophile (Drosophila melanogaster)	120 million de paires de bases	13,601
	Levure (Saccharomyces cerevisiae)	12 million de paires de bases	6, 275
	Nématode (Caenorhabditis elegans)	97 million de paires de bases	19,000
	E. coli	4.1 million de paires de bases	4,800
6	Arabidopsis (Arabidopsis thaliana)	125 million de paires de bases	25,000

Le projet du genome humain

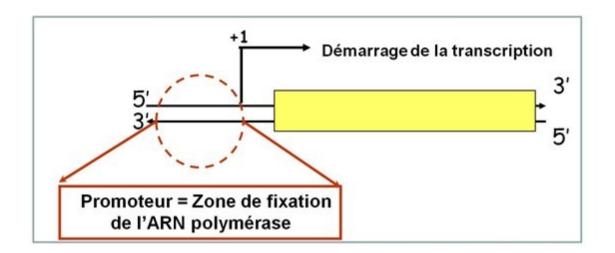

Nature; February 15, 2001

 Projet du gouvernement américain lancé en 1986 et terminé en Juin 2000 (annoncé à la Télévision par Bill Clinton)

Objectifs du projet:

- Identifier les gènes dans l'ADN humain
- Déterminer les séquences des bases qui constituent le génome
- Conserver les informations dans une base de données
- Développer des outils d'analyses de ces données
- Adresser les aspects éthiques, légaux, et sociaux qui peuvent survenir au cours de la recherche sur le génome
- Le premier génome de référence est un génome composite de différentes personnes (10-20 de races et d'ethnies différentes).

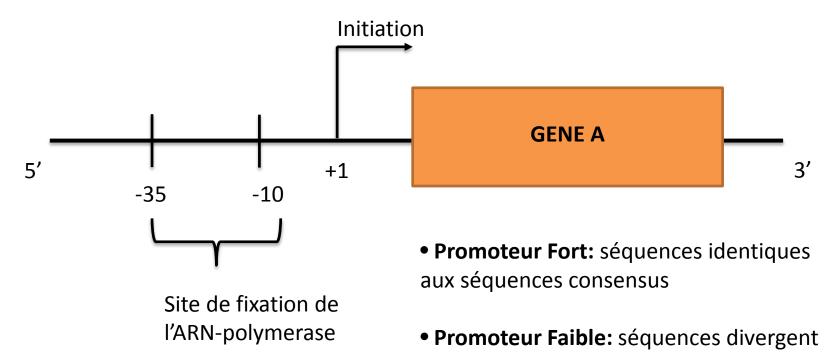
Structure d'un gène procaryote


Le gène procaryote est composé de 3 régions:

- Promoteur
- Séquence codante de l'ADN
- Terminateur

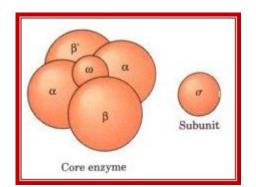
Transcription chez les procaryotes

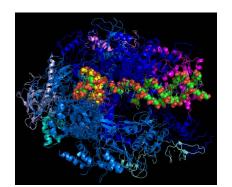
- La transcription a lieu dans le cytoplasme de la cellule bactérienne
- Les bactéries ont une seule ARN-polymérase qui catalyse la synthèse de tous les ARNs
- La transcription se déroule en 3 étapes distinctes:
 - Initiation
 - Elongation
 - Terminaison
- La réaction nécessite la présence
 - ADN bicaténaire (double brin) contenant un promoteur
 - ARN-polymérase
 - Magnésium (agent de protection des groupements SH)
 - Les 4 ribonucleotides (rNTPs).


Le promoteur

- Le promoteur est la région de l'ADN sur laquelle se fixe initialement l'ARN polymérase, avant de commencer la transcription de l'ARN.
- Elle est habituellement située en amont du site d'initiation de la transcription
- Elle contient des séquences reconnues par l'ARN polymérase
- Le promoteur est constitué de courte séquences conservées appelés séquences consensus
- Promoteur est actif en Cis: Il agit sur la transcription du gène qui lui est adjacent sur le même chromosome
- Promoteur est actif en Trans: Il n'agit pas sur les gènes situées sur le même chromosome.

Le promoteur des procaryotes (1)

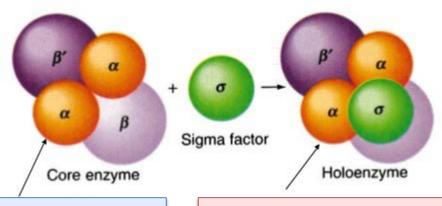

- Contient deux boites de séquences consensus:
 - 1. <<TTGACA>>: -35 pair de bases (pb) du site d'initiation
 - 2. <<TATAAT>>: : -10 pb du site d'initiation appelé **boite de Pribnow**



des séquence consensus

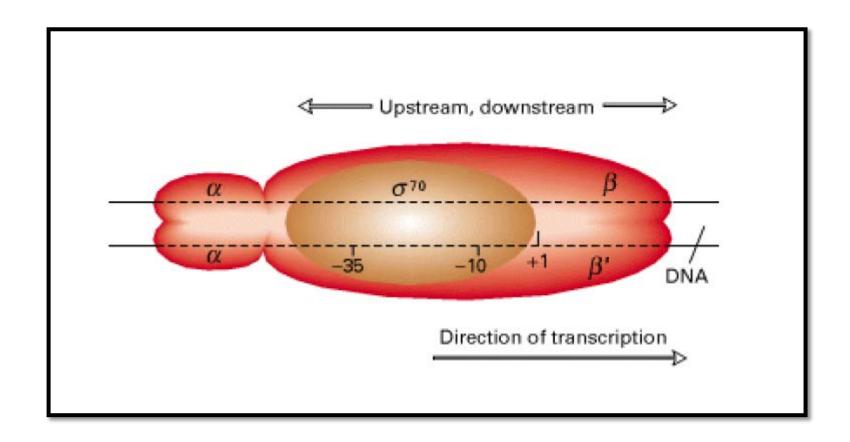
L'ARN polymérase bactérienne

- Complexe enzymatique ADN-dépendante responsable de la synthèse de l'ARN à partir d'une molécule d'ADN
- Elle n'a pas besoin d'une amorce pour initier la synthèse de l'ARN
- Elle ne possède pas d'activité exo-nucléasique
 - Pas de fonction d'édition pour corriger les erreurs
 - Taux d'erreur plus élevé que pour les ADN-polymérases
- Elle est formée de sous-unités α , ω , β , β' et σ
- Elle se présente sous deux formes:
 - Le cœur de l'enzyme = $\alpha_2 \beta \beta' \omega$
 - Holoenzyme = $\alpha_2 \beta \beta' \omega \sigma$



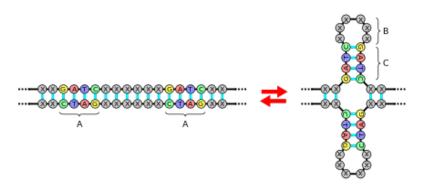
Structure de l'ARN polymérase

E. coli RNA polymerase


 2α , 1β , 1β ', 1ω and σ factor

Le Cœur de l'enzyme: nécessaire pour l'activité de polymérisation de l'ARN naissant. Elle a une affinité faible et non spécifique L'holoenzyme: nécessaire pour l'initiation correcte de la transcription en reconnaissant le promoteur. Elle a une affinité très forte et spécifique

- σ permet une reconnaissance spécifique du promoteur par l'ARN-polymérase (donc elle réduit l'affinité de l'enzyme pour les séquences non promotrices)
- σ a elle seule ne peut pas se fixer sur l'ADN. L'interaction avec le promoteur se fait grâce à l'aide de la sous-unité β qui est basique (l'ADN étant acide)


Interaction entre l'ARN polymérase et le promoteur

Le Terminateur

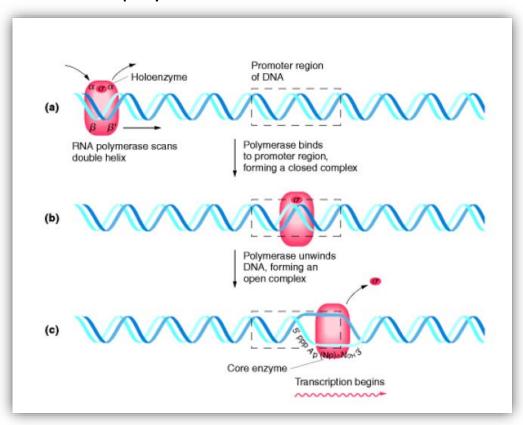
- Le terminateur se présente sous la forme d'un palindrome
- Un palindrome est une séquence d'ADN ou d'ARN identique lorsqu'elle est lue dans le sens $5' \rightarrow 3'$ sur un brin matriciel ou dans le sens $5' \rightarrow 3'$ sur le brin complémentaire.

• Le palindrome favorise la formation d'une structure secondaire en épingle à cheveux (ou tige-boucle) due à la complémentarité des bases au sein de la molécule d'ARN.

Séquence palindromique d'ADN.

A: palindrome; **B**: boucle; **C**: tige:

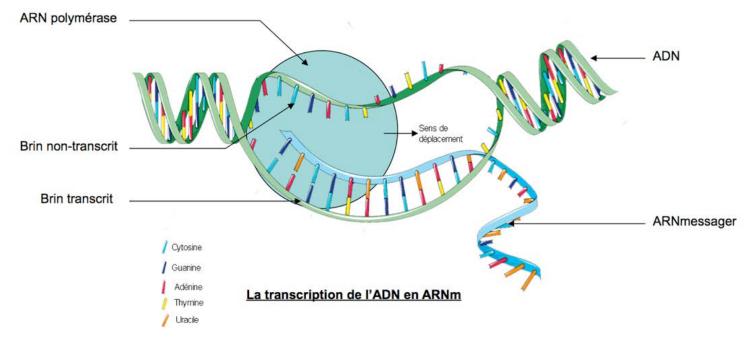
- Il y a deux mécanismes de Terminaison selon l'usage ou pas du facteur Rho:
- -Rho-indépendant
- -Rho-dépendant
- Le facteur Rho est une hélicase ATP-dépendante.


Les étapes de la transcription

La transcription s'effectue en 3 étapes distinctes:

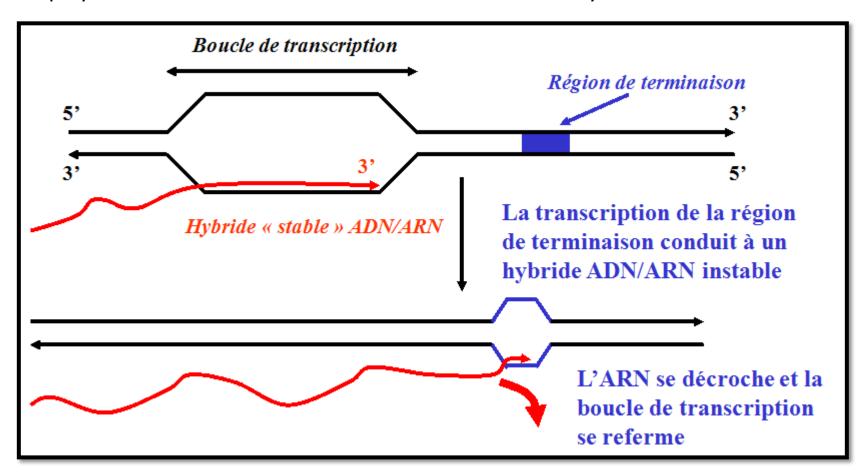
- Initiation
- Elongation
- Terminaison

Transcription chez les procaryotes (1)


A. Initiation: Elle consiste à la formation de la première liaison phosphodiester qui est réalisée par la sous-unité β qui correspond à la région catalytique de l'ARN polymérase

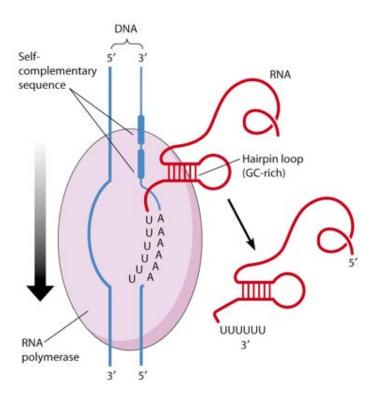
- (a) Formation d'un complexe fermé:
 Attachement spécifique de
 l'holoenzyme au promoteur se fait
 avec l'aide du facteur sigma
- (b) Formation du complexe ouvert: l' ARN polymérase déroule la double hélice de l'ADN sur 14-17 nucléotides
- (c) Formation de l'amorce: mise en place du premier nucléotide (A ou G) puis addition de 4 à 5 nucléotides suivi du détachement du facteur sigma (δ), après la transcription des 4-5 premiers nucléotides.

Transcription chez les procaryotes (2)


B. Elongation: Elle correspond à l'extension de l'amorce ARN formée lors du déplacement de la bulle de transcription le long de la molécule d'ADN. Elle est réalisée par l'enzyme cœur (sans δ)

- Déroulement de la double hélice au fur et à mesure que Pol avance sur le brin transcrit
- Addition de nucléotides à l'extrémité 3' du brin ARN naissant
- Formation d'une molécule hybride ADN-ARN sur une dizaine de paires de bases
- Les topo-isomérases suivent la bulle de transcription pour enlever les surenroulements.

Transcription chez les procaryotes (3)

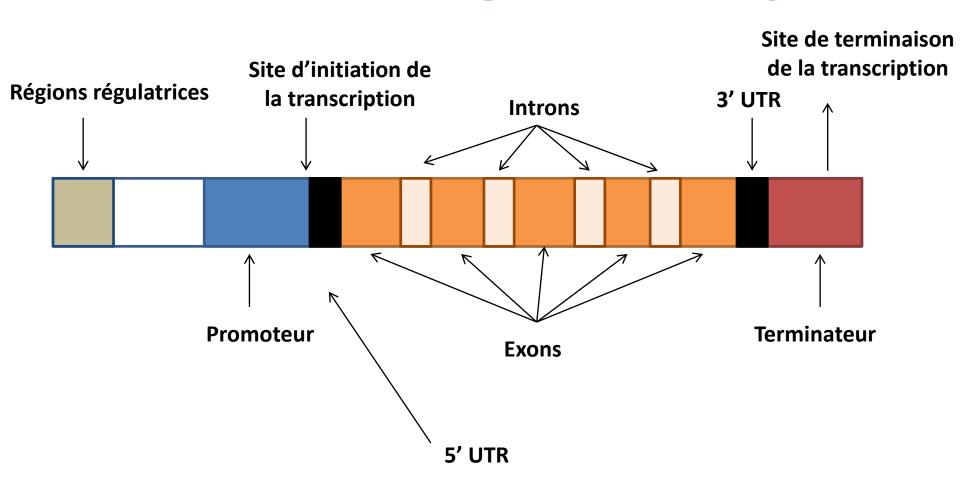

C. La terminaison: Elle se fait lorsque l'ARN polymérase arrive au niveau d'une séquence spécifique (région de terminaison) appelé **Terminateur.** A ce niveau, la dissociation de l'ARN polymérase survient à l'extrémité 3' du brin d'ARN néosynthetisé.

Terminaison Rho-indépendante

Structure en épingle à cheveux riche en G-C qui est suivie d'une séquence Poly-U d'environ 6 nucléotides permettant une dissociation plus facile de l'hybride ADN-ARN

ARN polymérase fait une pause et se dissocie du complexe

Terminaison Rho-dépendante


- Le facteur Rho est une hélicase ATP-dépendante
- Structure en épingle à cheveux est plus courte, n'est pas riche en G-C et n'est pas suivie d'une séquence Poly-U d'environ 6 nucléotides
- Rho a une affinité pour l'ARN en cours de synthèse
- Rho migre le long de l'ARN dans le sens 5' vers 3', localise le complexe, le déroule et libère l'ARN.

Inhibiteurs de la Transcription

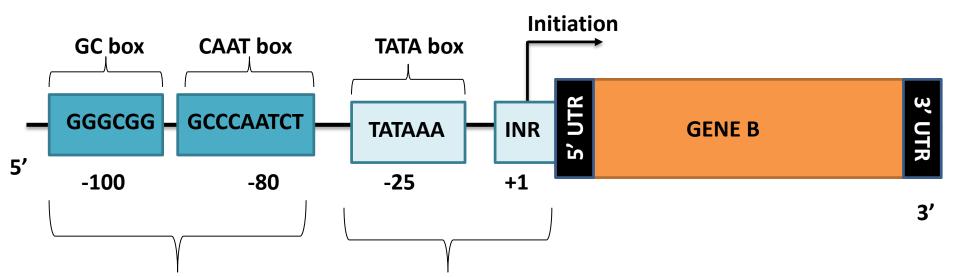
On peut pharmacologiquement arrêter la transcription en utilisant les antibiotiques:

- **Rifampicine** (inhibe l'initiation en bloquant l'action de la sous-unité β de ARN Pol)
- Actinomycine (inhibe l'élongation en s'intercalant entre les bases de l'ADN)

Structure d'un gène eucaryote

Exon: région de la séquence d'un gène qui est transcrite et conservée dans la structure de l'ARN messager jusqu'à la traduction

Intron: région de la séquence d'un gène qui est transcrite mais n'est pas conservée dans la structure de l'ARN messager mature


UTR (Untranslated région): région non-traduite en protéines

Classes des gènes eucaryotes

Gènes Eucaryotes	Produits	Structure
Classe I	ARN ribosomiques (ARNr)	Séquences répétées en tandem et séparées par des espaces inter-géniques
Classe II	ARN messagers (ARNm) qui sont traduits en protéines	Exons (parties codantes) Introns (parties non-codantes)
Classe III	ARN de Transfer (ARNt) et autres ARNs de petites tailles	Séquence répétées en tandem (similarité avec class I)

Structure du promoteur eucaryote

Le promoteur des eucaryotes contient plusieurs séquences consensus lui conférant une structure modulaire.

Promoteur proximal

Site de fixation des facteurs de transcription et permettent ainsi la régulation de l'activité du promoteur minimum

Promoteur minimum

Site de fixation de l'ARN polymérase II via des facteurs généraux de transcription

Les ARN-polymérases eucaryotes

- Trois ARN-polymérases ont été identifiés chez les eucaryotes
- Elles sont classées selon trois critères:
 - Localisation dans le noyau cellulaire
 - Le type d'ARN synthétisé
 - Sensibilité aux inhibiteurs de transcription tel que l' α -amantine.

Enzyme	Localisation	ARN synthétisé	Sensibilité aux inhibiteurs
ARN-polymérase I	Nucléole	ARN ribosomiques	Insensible (-)
ARN-polymérase II	Nucléoplasme	ARN messager	Sensible (+)
ARN-polymérase III	Nucléoplasme	ARN de transfert et snARNs	Sensible (+)

Transcription chez les eucaryotes: Généralités (1)

A. Facteurs de transcriptions

ARN Pol II a elle seule ne peut pas initier la transcription. Elle a besoin de protéines qui peuvent se fixer sur le promoteur. Ces protéines sont des facteurs de transcription appelés TFII (Transcription Factor II: facteurs de transcription qui coopèrent avec Pol II)

Les facteurs généraux de transcription sont:

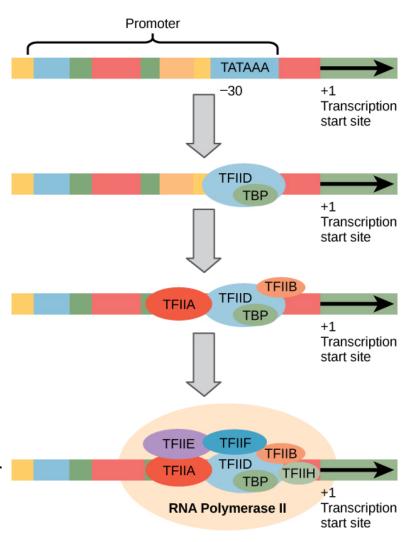
- **TFII D** constitue la protéine de liaison TBP (TATA binding protéine) qui se fixe sur la boite TATA au niveau du promoteur minimum et les facteurs associés à TBP (TAFs)
- **TFII A** interagit avec la séquence en amont du TATA box
- TFII B interagit avec la séquence INR en aval du TATA box (site d'initiation)
- TFII F agit durant l'élongation
- TFII H possède une activité hélicase et de réparation de l'ADN. Elle a aussi une activité kinase qui permet de phosphoryler Pol II au niveau de sa queue CTD (C-terminal Domain)

Transcription chez les eucaryotes: Généralités (2)

C. Les régions cis-régulatrices

Les séquences consensus du promoteur sont des séquences cis-régulatrices qui sont reconnues par des protéines spécifiques appelées facteur Trans-régulateurs.

Ces séquences peuvent être de trois types:


- -Les enhancers: sites de fixation des protéines amplificatrices de l'expression des gènes. Ils peuvent se trouver en amont et en avale du site d'initiation
- -Les silencers: sites de fixation des protéines inhibitrices de l'expression des gènes
- -Les insulators: séquences isolantes qui permettent d'isoler certaines régions du génome (par exemple ils bloquent l'interaction entre un promoteur et un enhancer)

NB: Les facteurs Trans-régulateurs agissent sur la vitesse de transcription des gènes. Leur fixation sur l'ADN dépend de leur structure qui peut être un motif hélice-boucle hélice, motif en doigt de zinc, et leucines zipper

Transcription eucaryote: Initiation

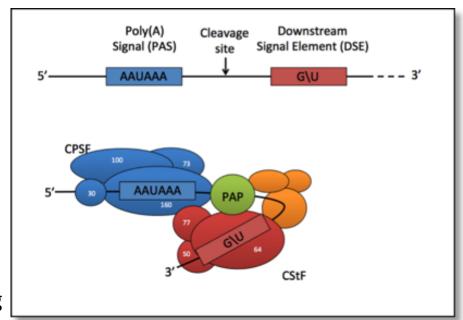
Initiation: correspond à l'assemblage des facteurs généraux de transcription sur le promoteur pour former le complexe d'initiation de la transcription

- TFIID se fixe sur TATA box grâce à TBP
- TFIIA et TFIIB se lient à TFIID pour stabiliser le complexe
- ARN Pol II et TFIIF se lient au complexe TFIID-TFIIA-TFIIB
- TFIIE se fixe sur ce complexe
- TFIIH (Hélicase ATP-dépendante) se lie et déroule le promoteur
- La transcription commence mais elle n'est pas optimale
- Les Trans-activateurs vont ensuite intervenir pour obtenir une transcription optimale
 - CTF se lie a la CAAT box
 - Sp1 se lie a la GC box

Transcription eucaryote: Elongation

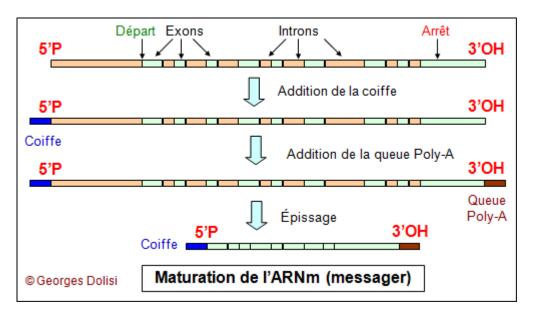
Elongation: correspond à l'addition séquentielle de nucléotides sur le brin d'ARN en cours de

synthèse



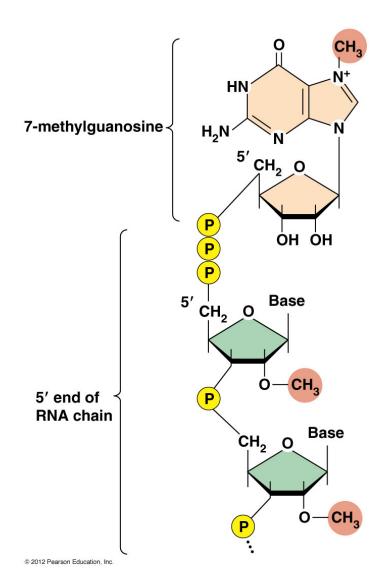
Nature Reviews | Molecular Cell Biology

- L'élongation est régulée par la phosphorylation du Domain CTD de l'ARN Pol II.
- CTD (queue) est riche en Serine et Thréonine qui sont des acides aminés pouvant être phosphorylés sur leur groupement OH.
- La phosphorylation du CTD est catalysée par la fonction kinase du TFII H en présence d'ATP
- ARN Pol II se déplace sur le brin en ajoutant le nucléotide complémentaire au brin transcrit avec une vitesse de transcription d'environ 40 nucléotides par seconde.


Transcription eucaryote: Terminaison

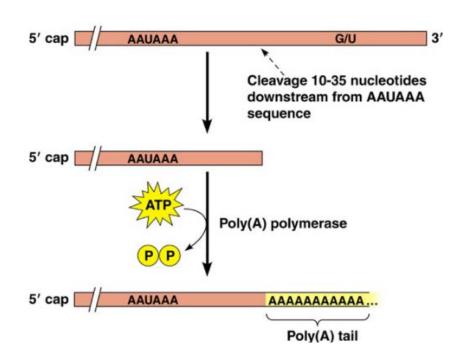
- La terminaison est assurée par des séquences spécifiques
- La terminaison commence lorsque ARN Pol II arrive sur un site de polyadenylation 5'-AAUAAA-3'
- Le brin d'ARN néoformé est libéré par diverses facteurs
 - La protéine CPSF (cleavage and polyadenylation specificity factor protein) se fixe sur le site de polyadenilation
 - La protéine CSTF (cleavage stimulating factor) se fixe sur une séquence riche en GU et s'apparie avec CPSF pour former une structure en tige-boucle
 - CFI and CFII (cleavage factor protein).

Maturation des transcrits primaires


- L' ARN formé lors de la transcription est un transcrit primaire appelé précurseur de l' ARN messager (pré-ARNm ou transcrit primaire)
- Le pré-ARNm doit subir 3 étapes de modifications dans le noyau cellulaire pour être mature:
 - Addition de la coiffe en 5'
 - Poly-adenilation en 3'
 - Excision des introns et épissage des exons

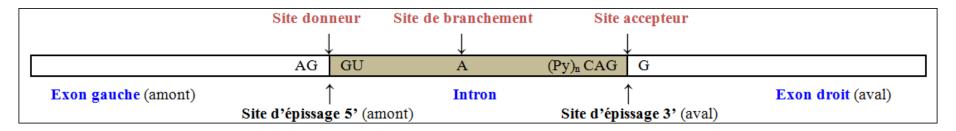
Maturation des transcrits primaires (1)

A. Addition de la coiffe en 5' (capping)

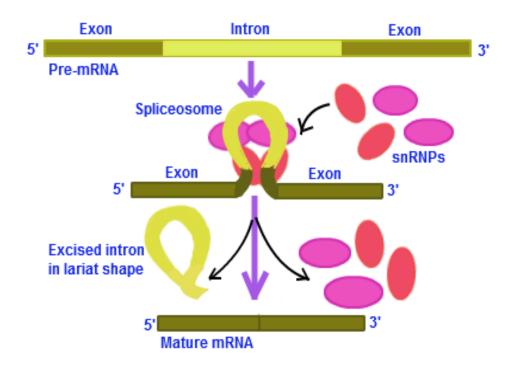

- Elle correspond à l'addition du **7-méthyl guanine** (m7G) à l'extremité 5' du préARNm . Ce ajout se fait par une liaison 5'-5' triphosphate
- Le groupement m7G est composé de
 - 3 groupements phosphates
 - une molécule GTP qui est méthylée sur le carbone 7 (C7)
- Cette coiffe est ajoutée suite à l'action du Capbinding Complex
- La coiffe est importante car elle:
 - Protège contre l'action des exonucléases
 - Sert de signature moléculaire lors de la translation par le ribosome

Maturation des transcrits primaires (2)

B. Poly-adenilation 3'

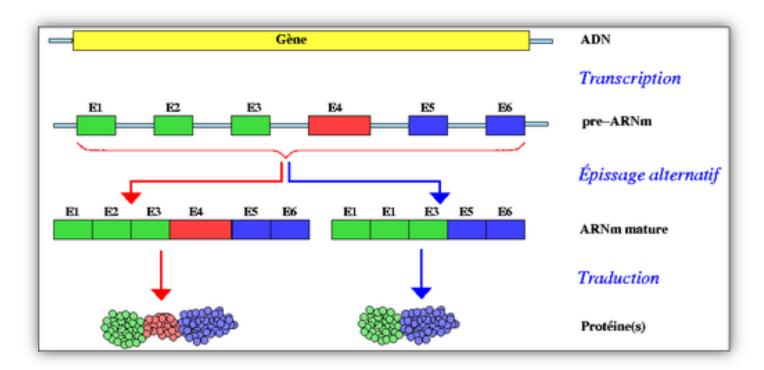

- Elle correspond à l'addition d'environ 200 nucléotides à l'extrémité 3' du préARNm .
- Ce ajout se fait sous l'action de la **Poly-A- polymérase (PAP)** qui reconnait un autre signal de poly-adenilation différent de celui du CPSF (AAUAAA) sur le préARNm
- La modification est appelée la queue Poly (A)
- La queue Poly (A) est importante car elle:
 - Permet d'exporter l'ARNm du nucleus
 - Protège contre l'activité des exonucléases
 - Participe à la terminaison de la transcription
- Participe à l'initiation et la régulation de la translation

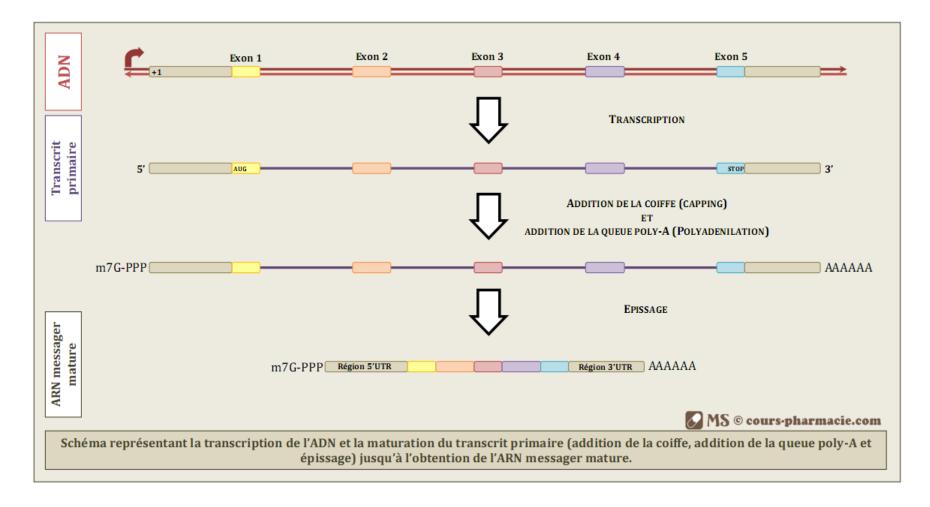
Maturation des transcrits primaires (3)


C. Excision des introns et épissage des exons (splicing)

Elle correspond à l'élimination des introns de la structure primaire du pré-ARNm et à la liaison des exons les uns aux autres

- L' excision des introns se fait par la présence du:
 - Site Donneur GU à l'extrémité 5'
 - Site Accepteur AG à l'extrémité 3'
- Ces sites sont reconnues par les snRNPs (Small-Nuclear-Ribonucleo-protein-Particules) qui sont constitués de:
 - -snRNA U1, U2, U3, U4, U5, U6
 - -Protéines
- L'ensemble des snRNPS qui participent à la maturation du préARNm s'appelle le **Spliceosome**


L'excision des introns et l'épissage des exons en image


- Le **splicesome** se forme sur les introns grâce à la reconnaissance de sites spécifique d'épissage par les snRNPs:
 - snRNP U1 se lie au site donneur
 - snRNP U2 se fixe sur le site de branchement et le site accepteur
- L'intron est excisé sous forme de lasso (lariat) qui sera ensuite dégradé
- Les deux exons sont reliés à la fin de la réaction.

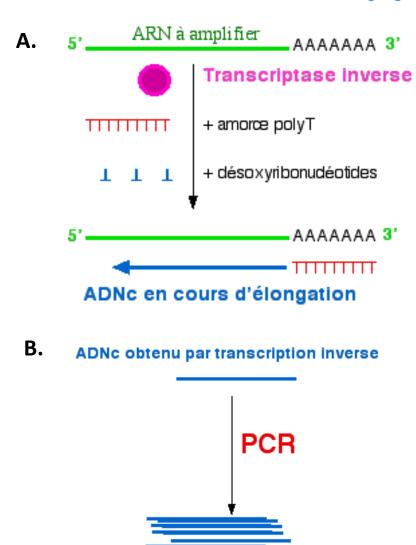
Epissage alternatif

- Permet d'avoir deux ou plusieurs ARNm matures à partir d'un seul transcrit primaire
- Il aboutit à la formation de protéines isoformes

Transcription eucaryote: Résumé



Résumé

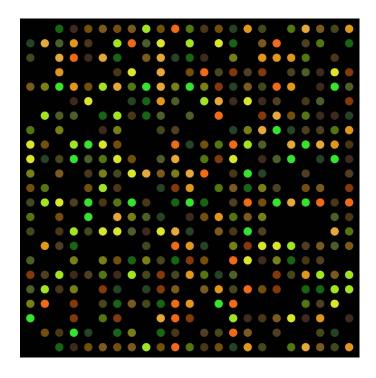

Procaryotes	Eucaryotes
Transcription dans le cytoplasme	Transcription dans le noyau
Transcrit Polycistronique (Plusieurs gènes donnent un ARNm)	Transcrit Monocistronique (un gène donne un ARNm primaire)
ARNm est mature	Pré-ARNm n'est pas mature
Un seul type d' ARN-Polymérase	Plusieurs ARN-polymérases
Transcription et Translation sont couplées	Transcription et Translation ne sont pas couplées

Comment étudier la Transcription au Laboratoire?

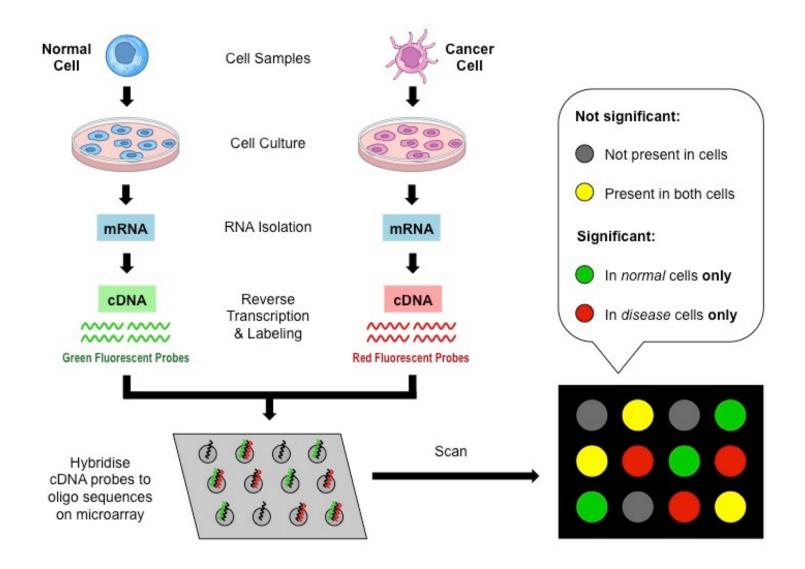
Extraction de l'ARN par le Trizol

RT-PCR

ADNc, complémentaire de


l'ARN initial, obtenu en

grande quantité


- La RT-PCR est une technique qui permet de faire une PCR (réaction en chaîne par polymérase: amplification) à partir d'un échantillon d'ARN.
- L'ARN est initialement rétrotranscrit grâce à une enzyme appelée transcriptase inverse, qui permet la synthèse de l'ADN complémentaire (ADNc; schema A). Ce dernier est ensuite utilisé pour réaliser une PCR (schema B).
- La RT-PCR peut être quantitative (qRT-PCR). Ceci permet de quantifier un type d'ARN initialement présent dans un échantillon (pour connaître le niveau d'expression d'un gène).
- La RT-PCR se fait dans des appareils de PCR particuliers qui permettent de visionner en temps réel la synthèse des fragments d'ADN.
- Pour cela, des molécules fluorescentes qui se fixent sur l'ADN sont utilisées. La fluorescence de l'échantillon augmente proportionnellement en fonction du nombre de molécules d'ADN formées.

Micro-array: Biopuce à ADN

- Une biopuce à ADN est une collection de séquences d'ADN microscopiques (oligos) attachées à une surface solide (verre, plastique ou sillicium)
- Ces séquences représentent des fractions d'une grande bibliothèque de gènes présents dans une cellule
- Si un gène est actif dans une cellule, alors l'ADNc (produit à partir de la transcription de l'ARNm) se liera à son oligo complémentaire
- Si l'ADNc a été marqué par fluorescence, alors l'oligo complémentaire peut être identifié (avec le gène qu'il représente)
- Si l'ADNc de cellules saines et malades sont marqués avec différents fluorophores, des comparaisons d'expression de gène peuvent être faites
- Les gènes qui ne sont actifs que dans un état malade ou normal intéresseront particulièrement les scientifiques.

Micro-array en Image

Questions?