

PHARMACIE 1ère année Cours de Biologie Cellulaire (2021-2022_S2)

Leçon 9 Les jonctions cellulaires

Présentée par Dinkorma Ouologuem

Bamako 28 Décembre 2022

PLAN

- 1. GÉNÉRALITÉS
- 2. LES JONCTIONS ETANCHES
- 3. LES JONCTIONS D'ANCRAGE
- 4. LES JONCTIONS COMMUNICANTES
- 5. CONCLUSION

OBJECTIFS

- 1. Décrire les trois types de jonctions cellulaires
- 2. Citer les protéines impliquées dans la formation des jonctions cellulaires
- Définir les liens existant entre les jonctions cellulaires et le cytosquelette

1. Généralités

Δ

1. Généralités

- Une cellule est liée aux cellules voisines par différents types de jonctions
- Les jonctions ne sont pas obligatoirement présentes au niveau de tous les types cellulaires

5

1.2. Les types de jonctions cellulaires

- Les jonctions intercellulaires différent en fonction de leur **forme**, de leur **fonction** et de **la largeur de l'espace intercellulaire**.
- Il existe 3 types de jonctions:
 - Les jonctions étanches ou jonctions serrées
 - Les jonctions d'ancrage ou jonctions intermédiaires
 - Les jonctions communicantes

1.1. Définition

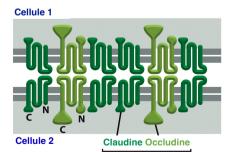
Les jonctions cellulaires sont des **régions spécialisées** de la membrane plasmique qui, en fonction de leur structure, assurent soit l'**adhérence des cellules**, soit l'**étanchéité** de l'espace intercellulaire, soit **l'ancrage des cellules à la MEC**, soit la **communication d'information entre les cellules**

6

1.3. Intérêt

- Les jonctions cellulaires sont des structures qui permettent l'attachement des cellules entre-elles et à la MEC => assurent la cohésion mécanique et la communication intercellulaire
- Les jonctions permettent de **former des tissus** et leur donnent une fonction.
- Des perturbations dans leur fonction est la cause de plusieurs pathologies

2. Les jonctions étanches


2.1. Description et caracteristiques

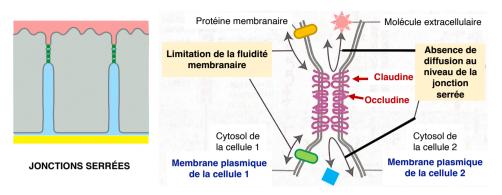
- Les jonctions étanches sont aussi appelé jonctions serrées, jonctions occlusives, « tight junctions »
- Ces jonctions sont assurées par des protéines transmembranaires appelées les claudines et occludines
- Les liaisons sont de type homophiles
- Ce type de liaison permet un fort rapprochement des membranes plasmiques des deux cellules liées

10

2.1. Description et caracteristiques

- Ces jonctions sont assurées par des protéines transmembranaires appelées les claudines et occludines
- Les liaisons sont de type homophiles

Protéines des jonctions serrées

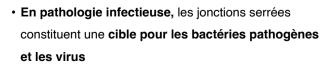

2.2. Fonctions des jonctions étanches

- Les jonctions étanches sont des jonctions intercellulaires situées à la partie apicale des faces latérales des membranes cytoplasmiques des cellules épithéliales.
- Les jonctions étanches éliminent entre les deux cellules liées tout espace intercellulaire

2.2. Fonctions des jonctions étanches

- Les jonction permettent de définir un milieu extérieur à l'organisme et un milieu intérieur
- ⇒Aucun passage de molécules entre les deux milieux; régule ainsi le passage d'ions, d'eau et de diverses macromolécules
- ⇒ la fluidité membranaire est impossible au niveau de des jonctions étanche: interdissent entièrement la diffusion latérale des protéines
- ⇒ maintient la polarité cellulaire, en prévenant le mélange des molécules de la face apicale de la membrane cellulaire et celles de la face latérale.

2.2. Fonctions des jonctions étanches



Les jonctions serrées et la séparation des milieux

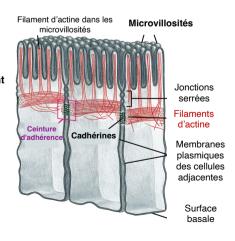
12

2.3. Pathologie des jonctions étanches

- Les mutations des gènes codants les claudines entraînent: des surdités, syndrome ichtyose néonatale-cholangite sclérosante
- Des expressions aberrantes de protéines des jonctions serrées sont observées dans les phénomènes tumoraux

syndrome ichtyose néonatale-cholangi sclérosante

3. Les jonctions d'ancrage


3.1. Description et caractéristiques

- · Aussi appelé jonctions intermédiaires
- Ce type de jonction est établit par les cadhérines (protéines d'ancrage localisée à la surface de la cellule) qui sont reliées au cytosquelette (actine ou filaments intermédiaires)

17

3.1. Description et caractéristiques

Schéma représentant la ceinture d'adhérence dans l'épithélium

3.1. Description et caractéristiques

En fonction de l'interaction des cadhérines avec le cytosquelette on distingue 2 types de jonctions d'ancrage :

- a. La ceinture d'adhérence au niveau des cellules épithéliales; Les cadhérines impliqués dans ces jonctions interagissent avec les filaments d'actine
- b. Les desmosomes: dans ce type de jonction les cadhérines interagissent avec les filaments intermédiaires

18

3.1. Description et caractéristiques

JUNCTION	Protéine transmembranaire d'adhésion	Ligand extracellulaire	Cytosquelette
1. Interaction cellule-cellule			
1a. Ceinture d'adhérence	cadhérines	cadhérines	Filaments d'actine
1b. Desmosomes	cadhérines	cadhérines	Filaments intermédiaires
2. Interaction Cellule-Matrice extracellulaire			
2a. Contact focaux (plaques d'adhérences)	Intégrines	Protéines de la MEC (fibronectines ou laminines)	Filaments d'actine
2b. Hémidesmosomes	Intégrines	Protéines de la MEC (fibronectines ou laminines)	Filaments intermédiaires

3.2. Les fonctions des jonctions d'ancrage

- Ces jonctions jouent un rôle critique dans la génération et la maintenance des couches épithéliales (celles bordant les organes de surface)
- Elle conditionnent l'adhésion entre cellules, communiquent un signal entre cellules voisines et participent à l'ancrage du réseau cytosquelettique d'actine à la membrane plasmique.
- Elles régulent ainsi le comportement et la croissance cellulaire normale.

4. Les jonctions communicantes

3.3. Les pathologies des jonctions d'ancrage

- Lors de l'embryogenèse, de la cicatrisation ou du processus métastatique, les cellules forment des épithéliums puis le guittent.
- Ce processus nécessite:
 - 1. la rupture de contacts adhérents entre les cellules
 - 2. puis le rétablissement de contacts adhérents entre les cellules
- Ce processus est régulé par le désassemblage puis le réassemblage des jonctions adhérentes => défaut de désassemblage et de réassemblage peuvent ralentir le processus

22

4.1. Description et caractéristiques

- · Aussi appelé jonctions gap
- Ces jonctions sont réalisées par des protéines transmembranaires appelées connexines
- 6 connexines s'associent pour former un canal transmembranaire = Le
 connexon

23

.

4.1. Description et caractéristiques

- L'association de 2 connexons portées par les membranes de 2 cellules voisines permet la formation d'un canal continu entre les cytosols des deux cellules.
- Une jonction communicante est formée du regroupement de nombreux connexons au niveau d'une même aire de la membrane plasmique

4.2. Fonctions des jonctions communicantes

- Les jonctions communicantes permettent la diffusion de molécules de petites tailles (moins de 1.5 kDa) entre les deux cytoplasmes
- La communication intercellulaire des jonctions gap permet une synchronisation cellulaire de la réponse à une variété de signaux intercellulaires en régulant la passage direct de petites molécules (et d'ions entre les cytoplasmes de cellules adjacentes
- Cette fonction participe au maintien de l'équilibre homéostatique et permet aux cellules et aux tissus de répondre à des stimuli externes.

4.1. Description et caractéristiques

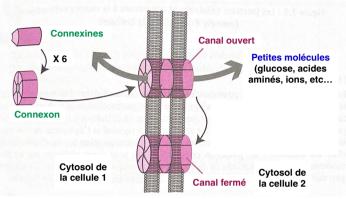
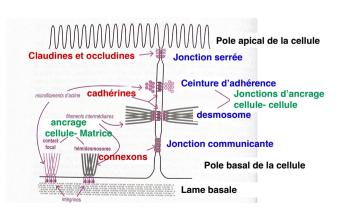


Schéma des jonctions communicantes

4.3. Pathologie des jonctions communicantes

- Des altérations de la communication intercellulaire s'observent dans la prolifération cancéreuse, les maladies cardiovasculaires et rénales et dans plus de 70% des maladies neurodégénératives
- Les mutations des gènes de connexines entraînent des multiples anomalies : des surdités congénitales, des maladies cutanées (ichtyoses, kératoses palmo-plantaires) ou oculaires (kératite).

5. CONCLUSION


5. Conclusion

- Les jonctions cellulaires sont des structures dynamiques capables de se modifier au cours du développement, d'événement normaux (cicatrisation) ou de phénomènes pathologiques (métastases)
- Les jonctions cellulaires font intervenir de nombreuses protéines pour assurer l'organisation des tissus, des organes, le maintien de la différenciation épithéliale.

30

5. Conclusion

Schéma récapitulatif des jonctions cellulaires et des adhérences à la MEC (cas d'une cellule épithéliale)

RÉFÉRENCES

- Abrégés de Biologie Cellulaire de Marc Maillet, 9^{ème} ou 10^{ème} Edition; chez MASSON
- 2. Molecular Biology of the Cell, 6th Edition de Bruce Alberts
- 3. Pass Biologie cellulaire EDISCIENCE